

Typical Features

- Wide input voltage range 4:1
- ◆Efficiency up to 89%
- ◆Low no-load power consumption
- ♦ Operating Temperature from -40 $^{\circ}$ C to +105 $^{\circ}$ C
- High isolation voltage 3000VAC(input-output) & 2100VAC(input-case)
- ◆Input under voltage protection, output over voltage, short circuit, over current and over temp protections
- Standard 1/4 brick size

Conform to CE

ZCD75-110S05A is a high-reliability DC-DC converter specially designed for the railway field. It's rated input voltage 110VDC (full range from 43V to 160VDC), single regulated output 5V/75W without minimum load limit. It has the advantages of high isolation voltage, Max operating temperature up to 105°C, with input under-voltage protection, output over-current, over-voltage, over-temperature and short circuit protections, input remote control, output voltage distal end compensation and Trim, etc. It is compliant with the railway standard EN50155 and widely used in the railway systems related equipment.

Typical Product List									
	Input voltage	Output	Output	Output	Ripple &	Full load			
Part no	range	power	voltage	current	Noise	efficiency (%)	Note		
	(VDC)	(W)	(VDC)	(A)	(mVp-p)	Min/Typ.			
ZCD75-110S05AC									Standard
20D73-110303AC							Positive logic		
ZCD75-110S05AN						Standard			
20075-110000AN	43-160	75	5	15	100	87/89	Negative logic		
ZCD75-110S05AC-H	43-100	43-100	3	13			Heatsink		
20073-110003AC-11							Positive logic		
ZCD75-110S05AN-H							Heatsink		
							Negative logic		

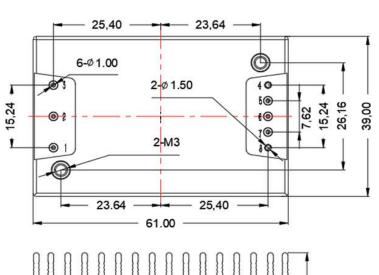
Note: The output power could be derated linearly when the input is within the range of 43-66V. The maximum output power is 50W at input 43Vdc.

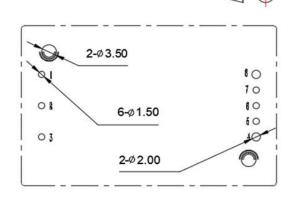
Input Specifications					
Item	Operating conditions	Unit			
Max input current	43V input voltage, full load output			1.8	Α
No load input current	Rated input voltage			10	mA
Input Inrush voltage (1sec. max.)	The unit could be permanently damaged by input over this Voltage	-0.7		185	
Start-up voltage	43		43	VDC	
Input under voltage protection	No-load test (over current protection will work in advance at full load)			40	
Remote Control (CNT)	Positive logic: CNT no connection or connect to 3.5-15V to turn on, connect to 0-1.2V to shut off				
	Negative logic: CNT no connection or connect to 3.5-15V to shut off, connect to 0-1.2V to turn on				

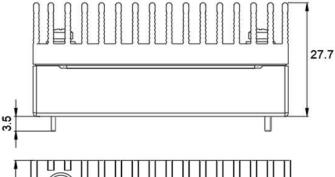
Output Specifications					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy	Rated input voltage, 10%-100% load		±0.2	±1.0	
Line Regulation	Full load, input voltage from low to high		±0.1	±0.2	%
Load Regulation	Rated input voltage, 10%-100% load		±0.1	±0.2	
Transient recovery time	050/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200	250	uS
Transient Response Deviation	25% load step change (step rate 1A/50uS)	-5		+5	%
Temperature Drift Coefficient	Full load	-0.02		+0.02	%/°C
Ripple & Noise	20M bandwidth, external capacitor above 220uF		80	100	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage distal end compensation (Sense)				105	%
Over temp protection	Maximum temperature on the metal board surface	105	115	125	°C
Over voltage protection		120		130	%
Over current protection		16		20	А
Short circuit protection		Hiccup, continuous, self-recov			ecovery

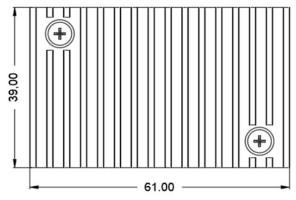
General Specifications						
Item	Operating of	conditions	Min.	Тур.	Max.	Unit
	I/P-O/P	Test 1min, leakage current < 3mA			3000	VAC
Isolation Voltage	I/P-Case	Test 1min, leakage current < 3mA			2100	VAC
	O/P-Case	Test 1min, leakage current < 3mA			500	VAC
Insulation resistance	I/P-O/P	@ 500VDC			10	ΜΩ
Switching frequency				150		KHz
MTBF			150			K hours

Environmental characteristics						
Item	Operating conditions	Min.	Тур.	Max.	Unit	
Operating Temperature	Refer to the temperature derating curve	-40		+105	°C	
Storage Humidity	No condensing	5		95	%RH	
Storage Temperature		-40		+125		
Pin Soldering temperature	1.5mm from the case, the soldering time< 1.5S			+350	°C	
Cooling requirements		EN60068-2-1				
Dry heat requirement		EN60068-	EN60068-2-2			
Damp heat requirement		EN60068-2-30				
Shock and vibration		IEC/EN 6	1373 C1/B	ody Mounted	d Class B	


EMC Performances (EN50155)						
	CE EMI RE	EN50121-3-2	150kHz-500kHz 79dBuV			
EMI		EN55016-2-1	500kHz-30MHz 73dBuV			
LIVII		EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m			
		EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m			
	ESD	EN50121-3-2	Contact ±6KV / Air ±8KV	perf. Criteria A		
	RS	EN50121-3-2	10V/m	perf. Criteria A		
EMS	EFT	EN50121-3-2	±2kV 5/50ns 5kHz	perf. Criteria A		
	Surge	EN50121-3-2	Line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A		
	CS	EN50121-3-2	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A		

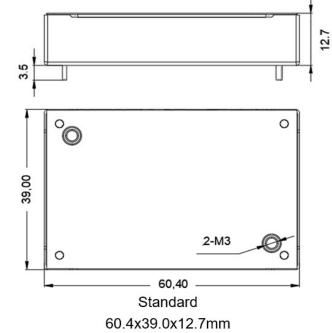

Physical Characteristics					
Case Materials	Metal bottom shell + plastic case in black, flame class UL94 V-0				
Heat sink	Dimension 60.4x39.0x15.0 mm, weight 52g, aluminum alloy, anodized black				
Cooling method H	Conduction cooling or forced air cooling				
Product Weight	Standard 72g, with heatsink 125g				

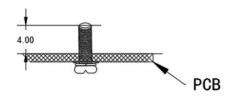



Mechanical Dimensions and Pin-Out description

Recommended PCB holes size

Standard+Heatsink 61.0x39.0x27.7mm

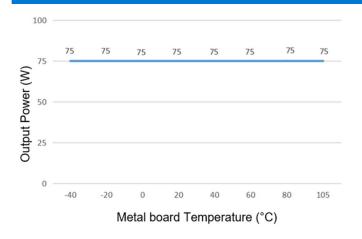

Note: Unit: mm

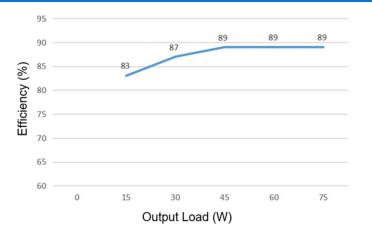

Pin 1,2,3,5,6,7 diameter: 1.00

Pin 4,8 diameter: 1.50

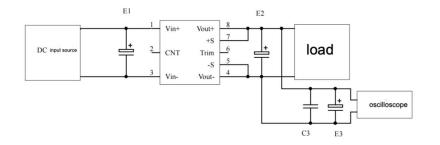
Tolerance: X.X ±0.50mm, X.XX ±0.10mm

Screwing torque: 0.4N.m Max




No.	1	2	3	4	5	6	7	8
Pin out	Vin+	CNT	Vin-	Vout-	-Sense	TRIM	+Sense	Vout+
Description	Input \/+	Remote	Innut \/	Output V-	Output distal end	Output	Output distal end	Output V+
Description	Input V+	Control	Input V-	Output v-	compensation S-	Voltage Trim	compensation S+	Output v+

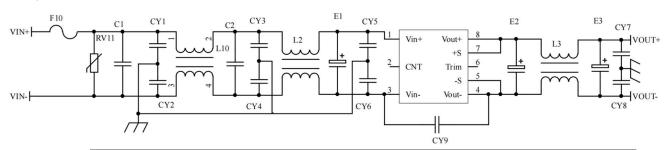
Product Performance Curve


Note:

- 1. Both the output power and efficiency in both curves are tested with typical values.
- 2. The temperature derating curve is tested at Aipu laboratory test conditions. It is recommended to keep the temperature of the case not more than 100 °C while the converter operates at the rated load range for customer application.

Recommended circuits for application

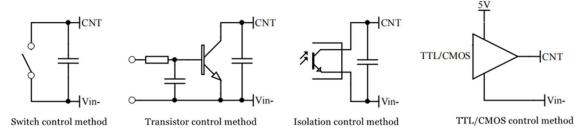
1. Ripple and Noise


All this series DC/DC converters will be tested according to the circuit below before shipping.

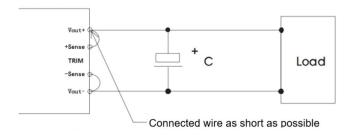
Capacitor value Output Voltage	El (µF)	E2 (µF)	C1(µF)	E3 (µF)
3.3VDC		1000		
5VDC		680		
12VDC	100			
		220	1	10
48VDC				
	68	68		
110VDC	66	00		

2. Recommended application circuit

If this circuit recommended is not adopted, please connect an electrolytic capacitor \geq 100 µF in parallel at the input to suppress the possible surge voltage at the input.

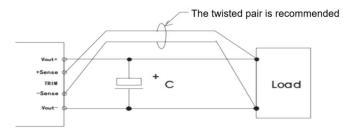


F1	3.15A/250V Time-delay fuse
RV1	10D 200V Varistor
C1,C2	474/250V Polyester Film Capacitor
CY1,CY2,CY3,CY4,CY5,CY6	102/250Vac Y2 capacitor
CY7,CY8	103/2KV Ceramic Capacitor
CY9	471/250Vac Y1 capacitor
E1	82µF/200V Electrolytic Capacitor
E2, E3	220µf/6.3V Low ESR Capacitor
L1,L2	≥5mH, temperature rise less than 25°K@1.8A
L3	≥100nH, temperature rise less than 25°K@15A



3. Remote control (CNT) application

4. Application for Sense


1)With NO distal end compensation

Notes:

- 1. Vout+ & Sense+, Vout- & Sense- should be shorted when distal compensation is not needed
- 2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable.

2)With distal end compensation

Notes:

- 1. The output voltage may be unstable if the compensation cables are too long.
- 2. Twisted pair or shielded cables are recommended, the cable length should be as short as possible.
- 3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
- 4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.

5. TRIM & TRIM resistance calculation

The calculation of $\triangle U$ and Rup & Rdown:

Rup=12.75/ \triangle U-5.1 (KΩ)

Rdown= $10.2*(3.75-\triangle U)/\triangle U$ -5.1 (K Ω)

Voltage-up: Add Rup between Trim and Vout-

Voltage-down: Add Rdown between Trim and Vout+

6. This product is not available for connection in parallel to increase the output power. Please contact Aipu technician for this kind of requirement.

Others

- 1. The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product failed after operating under wrong or unreasonable conditions.
- 2. Aipupower can provide customization design and filter modules for matching, please contact our technician for details.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 Hotline: 400-889-8821

E-mail: sales@aipu-elec.com Website: www.aipupower.com